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Abstract 

We describe the implementation of a technology that achieves system-wide 
properties in large software systems by controlling and modifying inter-
component communications. Traditional component-based applications intermix 
the code for component functionality with support for systematic properties. This 
produces non-reusable components and inflexible systems. The Object 
Infrastructure Framework (OIF) separates systematic properties from functional 
code and provides a mechanism for weaving them together with functional 
components. This allows a much richer variety of component reuse and system 
evolution. Key elements of this technology include intercepting inter-component 
communications with discrete, dynamically configurable “injectors,” annotating 
communications and processes with additional meta-information, and a high-
level, declarative specification language for describing the mapping between 
desired system properties and services that achieve these properties. We have 
implemented these ideas in a CORBA/Java framework for distributed computing, 
and are currently applying them to a distributed system for the analysis of 
aerospace design (wind-tunnel, and CFD) data. 
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Intelligent Engineering Software Environments 

 “The ISE [Intelligent Synthesis Environment] aims to link scientists, design 
teams, manufacturers, suppliers, and consultants in the creation and operation of 
an aerospace system and in synthesizing its missions. The ultimate goal is to 
significantly increase creativity and knowledge and eventually dissolve rigid 
cultural boundaries among diverse engineering and science teams.”  
— Goldin, Venneri and Noor [1] 
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NASA programs and missions are widely dispersed among NASA centers and 
contractors.  Typically this has implied a geographic centralization of skills required for a 
mission to be completed. As we enter the 21st century, the need for more productive 
engineering environments will greatly change the way we engineer systems. No longer 
do we have the option of slow design cycles and separate component engineering for 
aerospace systems. The mantra “faster, cheaper, better” is required by the funding 
realities, the high quality, and rapid mission requirements of today programs. As Goldin, 
et. al have observed, we need Intelligent Synthesis Environments that allow engineering 
tools to be freely applied to the virtual design and analysis of NASA products. 

Virtual design implies the capability to assess and analyze the impact and variation 
of design decisions without developing (or with very limited development of) hardware 
prototypes.  This distributed and collaborative design simulation is within the technical 
range of existing design tools except for the fact that these tools tend to be hand-crafted, 
finely tuned, and built to operate in a unique and well formulated computational 
environments.  Intelligent synthesis requires something else. 

Traditionally, we built engineering analysis and design tools for specific computing 
architectures and purposes. Any distribution, sharing, or composition of such elements 
was explicitly part of their design and laboriously constructed to the particular 
architecture and topology available. Today we are seeing the emergence of “software bus 
architectures” that allow well-defined components to provide services accessible from 
anywhere on a network. The most prominent (and simplest) of such systems is the World 
Wide Web, which serves (in its most straightforward application) to provide fixed and 
parameterized “documents” in response to requests. While this works well for web-
surfing and shopping, more complex applications require invoking a greater variety of 
actions on complex data. Such applications demand application program interfaces. The 
state-of-the-art in providing such remote application interfaces is Distributed Object 
Technology (DOT), where the system presents to the programmer the illusion that a 
remote object or functionality is local to the programmer’s environment, and can be 
called and manipulated like any other local object. Examples of DOT technology include 
CORBA, DCOM, and Java RMI.  

DOT allows distributed components to invoke each other and communicate, but is 
only a first step towards an Intelligent Synthesis Environment. Users and contributors to a 
system of shared data and tools will demand appropriate policies on issues such as 
security, reliability, data ownership, quality of service, and management and monitoring 
of processes. (We call such qualities ilities.) In the following sections, we briefly 
overview the implementation of DOT, describe a technology (discrete behavior injectors 
on the communication paths between components) for extending DOT to allow dynamic 
management of ilities, describe some of our experience in implementing such injectors, 
and touch on the application of this technology to intelligent synthesis environments.  

Distributed Object Technology  

How are distributed applications built? Current technology uses sockets, messages and 
events, remote procedure calls (e.g., DCE), or Object Request Brokers (ORBs, including, 
for example, CORBA [2], JavaRMI and DCOM). Without too much loss of generality, 
we focus on ORB frameworks and use CORBA as our exemplar. 
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ORBs allow object-oriented applications to use objects that are not in the same 
address space. The key semantic advantage of ORBs is that ORBs provide location 
transparency—to an application program, a remote object “looks like” any other (local) 
object. This is accomplished by delegation to “proxy” objects. On the client side of the 
application, we create a proxy object for the server (the stub). (Here we use “client” and 
“server” generically as the originator and recipient of a request.) From the point of view 
of the client code, the stub is an object like any other object that supports the interface of 
the server. The stub is responsible for accepting calls from client programs, and 
translating these calls into a “linear form” that can be transmitted over a network 
(marshaling). It sends them over the net to the server machine, where a corresponding 
proxy (the skeleton) re-inflates that linear form into object references and primitive data 
types (demarshaling) and calls the appropriate method on the actual server 
implementation object. The inverse process is used for the return value. Marshaling 
handles all issues relating to transmission and translation of the various data types. To the 
application code, this process is transparent: the client is unaware that the client side 
proxy is delegating the request to a remote implementation object and the server does not 
suspect that it is being used by a remote call. Figure 1 illustrates the ORB architecture. 

 
The client and server share the definition of the server interface through an Interface 

Definition Language (IDL). A CORBA vendor provides compilers that take IDL and 
generate the code for stub and skeleton proxies in the target languages. (One of the major 
virtues of CORBA is its multilingual capabilities. A client written in one programming 
language can, relatively seamlessly, invoke services implemented in another, with data 
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Figure 1: CORBA stubs and skeletons 
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representations translated automatically. CORBA is thus a favorite of those trying to 
integrate multi-lingual, distributed, legacy applications into a coherent whole.) 

ORB technology provides object location transparency and hides the details of 
marshaling and communication protocols. What it doesn’t do is handle issues of partial 
failures, security, quality of service and other such ility concerns. ORBs such as CORBA 
and Enterprise Java Beans provide different discrete mechanisms for particular ility 
issues, but such mechanisms typically (1) provide only a finite number of choices for the 
application architect, and (2) require a good understanding and diligent application of the 
mechanism by the application programmer. 

The Object Infrastructure Framework 

The implementation heart of OIF is inserting behavior on the communication path 
between components. This effectively serves to “wrap” services with additional actions at 
both the client and server ends. The OIF wrapping mechanism is distinguished by the 
following features: (1) OIF wrappers are composed of discrete “injectors” that are first 
class objects. Injectors can be sequenced, combined, treated uniformly by utilities, and 
dynamically manipulated as a program is running. (2) Wrapping is by object/method. 
That is, a specific object (or proxy) can have its own unique set of injectors for a 
particular method. (3) Injectors communicate among themselves and with the client and 
server by annotations, meta information about the call and result. Typical annotations 
include session identification, request priority, sending and due dates, version and 
configuration, futures, cyber wallet, public key, sender identification and conversational 
thread. OIF propagates this meta information into the thread of a called service and from 
there to the annotations of that service’s calls. (4) OIF provides a high-level specification 
compiler (Pragma) that takes a description of the desired properties of an application and 
how to achieve these properties and arranges these behaviors on the appropriate 
wrappers. Figure 2 illustrates the relationship of injectors to CORBA skeletons and stubs.  

The motivation of these features and their relationship to the Pragma compiler is 
discussed in the paper Inserting Ilities by Controlling Communications [3]. Here we 
consider the implementation mechanism in greater detail. 

Injectors 

In general, the programmer uses Pragma to define a default sequence of injectors for a 
given interface and method. In the course of program execution, it is possible (with the 
appropriate privileges) to modify the injector sequence for any particular proxy (or the 
defaults for a class of proxies.) 

Operationally, each of the stubs and skeletons have been constructed to obtain the 
injector sequence for each method and to invoke the first injector in that sequence with 
(1) a (classical CORBA) request object that embodies (a) the target server, (b) the 
operation to be performed on that server, (c) the arguments of that operation, and (d) a set 
of annotations for this operation, and (2) the continuation: the set of injectors to be 
executed after this injector. Annotations are name-value pairs, where the name is a string 
and the value, any CORBA value. (It is the responsibility of annotation users to correctly 
maneuver in the CORBA type space. For security reasons, future versions of the system 
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will restrict the annotations, program arguments and results accessed and modified by an 
injector to those declared for that injector.) 

Grossly, an injector wants to perform some actions before the server action and 
some after. It is the responsibility of an injector to invoke the remaining injectors of the 
continuation between its before and after actions (that is, to call the “next” operation on 
the continuation.) This structure allow injectors to alter the flow of control in interesting 
ways—for example, to forgo calling the after injectors (as is done in the caching injector, 
below) and to use the natural exception-catching mechanisms to catch (and correct) 
exceptions in the continuation processing. 

Elsewhere we have argued that the injector mechanism can be used to imbue 
applications with ilities such as security, reliability, quality of service, and manageability 
[3]. To make the discussion more concrete, in this section we consider specific injectors 
we have implemented (or are in the process of implementing) and their impact on these 
ilities.  
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Figure 2: Injectors on stubs and skeletons 
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Security 

Classically, security has four components: (1) authentication, determining the identity of 
a user; (2) access control, deciding if a user is permitted to do a specific operation; (3) 
encryption, encoding messages between correspondents; and (4) intrusion detection, 
recognizing attacks on the system. We have developed injectors to do authentication and 
access control.  

The authentication injector keeps the user’s credentials in a request annotation. The 
injector runs on both the client and server. If the server-side injector is unhappy with the 
credentials offered in the annotation, it raises an exception that is caught by the client 
side. The client injector can then query the user (in our example, demand the user present 
their Java ring) and restart the request with the newly obtained credential values. (A more 
thorough version of this injector would encrypt the credential values.) 

The access control injector simply raises an exception if the user identification 
annotation does not have the appropriate privileges to perform the specified operation. A 
more complex version of this injector would be able to examine the arguments of the 
request and the resulting value, thereby differentiating access with respect to the actual 
values. For example, a defense-contractor’s phone directory service might censor (or 
even fake) requests for information about people whose employment is meant to be 
secret, except from trusted sources. 

While it is possible to do encryption with injectors, injectors are not the best 
mechanism. The difficulty lies in encrypting and decrypting references to objects—such 
things must be recognized as objects by the demarshaling code, and encrypting them after 
demarshaling would preclude this. We discuss this issue with respect to CORBA 
interceptors, below.  

An intrusion detection injector could be used report suspicious service requests to a 
security agency [4], though is not in itself an intrusion detection algorithm. Similarly, 
such injectors could be notified by security agencies of new patterns of suspicious 
activities to look for, and could be used to reject intrusive requests. 

Reliability 

We have created two injectors focussed on increased reliability. The error retry injector 
catches errors and retries them (up to some predefined limit). This is useful in situations 
where the system load or connection noise tends to time out some requests that would 
otherwise work. By retargeting to a peer of the original service target, the error retry 
injector could be used to produce redundancy or load balancing. Of course, this strategy 
is appropriate only on services without harmful side effects—it the error happens after 
the service, such an injector could be invoking the service repeatedly. 

The rebind injector notices broken connections and opens a connection to an 
alternative server. This replicates a provision found in some CORBA ORBs at the system 
level. 

We have also experimented with using replication to maintain a more reliable 
database. Replication mechanisms could be built into injectors, though it seems better to 
treat the replication injector as seeking to rebind until replication confirmation is 
received.  
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Quality of service 

By quality of service we mean to encompass a variety of requirements for getting things 
done quickly and within time constraints. The real-time community recognizes two 
varieties of real-time systems, hard real-time and soft real-time. Hard real-time systems 
have tasks that must be completed at particular deadlines, or else the system is incorrect. 
Soft real-time systems seek to allocate resources so as to accomplish the most important 
things. To achieve hard real-time systems, one can either reserve resources and plan 
consumption or use some kind of anytime algorithm. Aside from that latter, somewhat 
esoteric choice, hard real-time requires cooperation throughout the processing chain (for 
example, in the underlying network), for the promise of particular service can be 
abrogated in too many places. That is, you can’t get hard real-time unless you build your 
entire system with that in mind. For such systems, we have built a service reservation 
injector, that invokes the appropriate calls to reserve service paths on an ATM network. 

Soft real-time quality of service is amenable to several injector mechanisms. We 
have built a queue-manager injector that queues requests to a server and performs higher-
priority requests first. Priorities are conveyed as annotations. Since the default behavior is 
to propagate the annotations of a service to its calls, this mechanism performs chained 
calls at the priority of the original.  

We have also developed a side-door injector that open socket connections between 
the client and server sides for the transport of massive data sets without the overhead of 
marshaling and the CORBA stack.  

Quality of service can also be improved just by making things faster. We have 
injectors for two methods of overall program performance improvement. The futures 
injector implements futures. Most models of concurrent computing are either 
synchronous or asynchronous. In a synchronous system the maker of a request waits for 
the recipient of the request to finish (and perhaps to return an answer). This is the model 
of telephone calls and procedure calls. Synchronous communication has the advantage 
that the requestor has an easy time knowing what a response is about (it's right there in 
the code—this exact spot) but the disadvantage that the requestor has to wait for the 
answer (when it could be doing other things.) In an asynchronous communication, a 
requestor sends off a request and then continues about its business. This is like a letter or 
event-based messaging system. Asynchronous communication has the advantage that the 
requestor can continue processing while the request is being handled, but the 
disadvantage that there's no simple way to match responses into the requestor's code.  

Futures are a mechanism for bridging the conceptual distance between these two. 
With futures, requests immediately return a future, an object in the requestor’s space. 
Think of this future as a "box." The system will arrange for the reply to the message to go 
into the box. At any time, the requestor can open the box (try to use the reply). If the 
reply is there, the requestor can use it (and doesn't have to wait.) If the reply isn't there 
yet, the requestor waits for the answer to appear. (We also allow an interface for the 
program to “shake the box” to see if there’s anything there yet, but such a program knows 
it’s getting a future—otherwise, the behavior is transparent to the application.) The 
trickiest part of a futures injector is that the application program wants not only to get 
back this box with the right properties, but also that the box needs to support the right 
interface (be the right type of thing with the right type of operations.) Using the futures 
injector thus requires extending the IDL compiler to create such types. 
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The caching injector is more straightforward. This injector caches the values of 
remote calls. When a call to the same underlying object, on the same method, with the 
same arguments is used again, it retrieves the value from the cache and dispenses with the 
remote call. Of course, this is appropriate only for services that are functional and free of 
side-effects, and has the potential for impairing other injectors, such as an accounting 
injector that wants to measure service use. (As have such caches on the World Wide Web 
caused trouble for those who wish to count eyeballs on advertisements.) 

Manageability 

We take a network control perspective on manageability, dividing manageability into five 
elements: performance measurement, accounting, failure analysis, intrusion detection, 
and configuration management. We have developed an accounting injector that reports on 
service use (and totals charges) and a logging injector that can be used to report arbitrary 
events to a debugging system and to perform updates on graphical user interfaces. We 
have also developed a smart “publish-and-subscribe” event notification system and 
incorporated it into the framework to allow the appropriate spread of information about 
events throughout the system.  

We have also begun work on a configuration management injector that dynamically 
tests for incompatible versions of injectors and automatically updates stale configurations 
to the current version. The dynamic nature of injectors thus provides the potential for 
uniformly “self-updating” software, a critical element over the evolution of long-lived 
systems. 

Related work 

We have described a mechanism for separately specifying system-wide concerns in a 
component-based programming system and then weaving the code handling those 
concerns into a working application. This is the theme of Aspect-Oriented Programming 
(AOP). OIF is an instance of AOP, and brings to AOP a particularly elegant division of 
responsibilities. Key work on AOP includes Harrison and Ossher’s work on Subject-
Oriented Programming [5] which extends OOP to handle different subjective 
perspectives; the work of Aksit and Tekinerdogan on message filters [6], which, like OIF, 
reifies communication interceptors; Lieberherr’s work on Adaptive programming [7] 
which proposed writing traversal strategies against partial specifications; and Kiczales 
and Lopes [8] work on languages for separate specifications of aspects, which effectively 
performs mixins at the source-code language level. Czarnecki and Eisenecker’s book [9] 
includes a good survey of AOP technology. 

The idea of intercepting communications has occurred several times in the history of 
computer science. Perhaps the earliest examples were in Lisp: the Interlisp advice 
mechanism and mix-ins of MacLisp. A more modern realization is seen in mediators 
[10], which recognizes the implicit agent-hood of the communication interception 
elements. More recently, the CORBA standard has been extended to provide interceptors, 
programmer-defined operations that run in the communication path. From our point of 
view, this is the right idea, wrongly implemented. CORBA interceptors run after the 
call’s arguments have been marshaled, making them opaque to the interceptor code 
(though well-prepared for encryption). CORBA interceptors are also considerably more 
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structurally rigid than the OIF framework’s injectors, not being objects to be manipulated 
at run-time. If one is particularly fond of CORBA interceptors, one can view our work as 
a methodology for using them. 

Thompson et. al [11] present an OIF-like use of injector-like plug-ins in a web 
architecture. Examples of uses of these plug-ins include performance monitoring and 
collaborative documents.  

It is common to tackle ility concerns by providing a framework with specific 
choices about those concerns. Examples of such include transaction monitors (e.g., 
Encina, Tuxedo) and distributed frameworks like Enterprise Java Beans and CORBA.  

The use of a separate specification language for creating filters parallels the work at 
BBN on quality of service [12], where an IDL-like Quality Description Language is 
woven with IDL to affect system performance.  

Discussion 

A problem with large engineering software applications is that the majority of the code is 
devoted not to implementing desired input-output behavior but to providing system-wide 
properties like reliability, availability, responsiveness, performance, security, and 
manageability.  While services to support system requirements may be modularized and 
packaged, the calls to these services must be sprinkled and coordinated throughout the 
components of the system. This produces code where the original design has been 
obscured by code to support system requirements. This further requires changing the 
actual source code in response to system-wide policy changes. 

NASA has undertaken several activities to address the issues associated with large-
scale distributed applications, particularly supercomputing applications.  The NASA 
Information Technology Base Program [13], and NASA High Performance Computing 
and Communication Program [14] are coordinating funding of implementations of an 
“Information PowerGrid.”  The distributed supercomputing grids aim to build on system-
wide systems like Globus [15].  While this looks to be a worthy effort to improve 
massive computational codes with C and FORTRAN interfaces, the more likely 
benefactors of distributed, collaborative design usually don’t require the same 
programming interfaces or desire access to be on a supercomputing grid.  The 
programming methods provided by the grid packages instill and promote the same 
mixing of application and support system requirements, just in an improved fashion. 

NASA Ames Research Center's Object Infrastructure Framework (OIF) is an 
example of Aspect-Oriented-Programming whose goal is to simplify the development of 
object-oriented, distributed engineering software systems by providing an architecture 
that separates code that supports input-output behavior from code that achieves system 
requirements. This then allows for independent development of these two different 
concerns.  The CORBA/Java implementation is a toolkit that addresses the popular and 
effective programming object/language paring. 

As distributed large-scale analysis, design and engineering programs are developed 
for NASA missions in 21st century, more intelligent software frameworks will be used to 
rapidly provide the high degree of robust applications NASA’s Missions and Programs 
needs.  The OIF is such a framework and will be used in several NASA distributed 
applications supporting the Intelligent Synthesis Environment, and Information 
Technology Base Programs. We are currently applying the OIF framework to the 
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implementation of the third version of the DARWIN system [16], a tool for the 
management, distribution, and analysis of aerospace (wind-tunnel, and CFD) data 
available to researchers. This version of DARWIN will rely on OIF to improve 
robustness, security, managability and overall performance. 

In closing, we note that annotation is a key concept for the ISE environment. The 
work described here is concerned with annotating communications between active 
processing elements, but that is not the limit of the uses of annotation. An ISE will 
contains many possible data sets, with varying dependencies, configurations details, 
ownership rights, and so forth. Keeping track of such annotations, responding to the 
annotations in processing, and asserting the correct annotations for derived objects will 
prove an important enabling principle of ISE-like environments.  
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